Ygs Çarpanlarına Ayırma Ders Notu

Çarpanlarına Ayırma
Bu ders notumuzda özenle hazırlanmış YGS ders notlarımızdan Çarpanlarına Ayırma Ders Notunu bulabilirsiniz.

ÇARPANLARA AYIRMA

Bu dersimizde çarpanlara ayırma konusunun önemli noktalarını anlatacağız. İyi Dersler…

A. ORTAK ÇARPAN PARANTEZİNE ALMA

https://ygs.konu-anlatimi.gen.tr/

En az dört terimi olan ifadeler ortak çarpan parantezine alınacak biçimde gruplandırılır, sonra ortak çarpan parantezine alınır.

B. ÖZDEŞLİKLER

1. İki Kare Farkı – Toplamı

1) a2 – b2 = (a – b)(a + b)

2) a2 + b2 = (a + b)2 – 2ab

3) a2 + b2 = (a – b)2 + 2ab

2. İki Küp Farkı – Toplamı

1) a3 – b3 = (a – b)(a2 + ab + b2 )

2) a3 + b3 = (a + b)(a2 – ab + b2 )

3) a3 – b3 = (a – b)3 + 3ab(a – b)

4) a3 + b3 = (a + b)3 – 3ab(a + b)

3. n. Dereceden Farkı – Toplamı

1) n bir sayma sayısı olmak üzere,

xn – yn = (x – y)(xn – 1 + xn – 2y + xn – 3 y2 + … + xyn – 2 + yn – 1) dir.

2) n bir tek sayma sayısı olmak üzere,

xn + yn = (x + y)(xn – 1 – xn – 2y + xn – 3 y2 – … – xyn – 2 + yn – 1) dir.

4. Tam Kare İfadeler

1) (a + b)2 = a2 + 2ab + b2

2) (a – b)2 = a2 – 2ab + b2

3) (a + b + c)2 = a2 + b2 + c2 + 2(ab + ac + bc)

4) (a + b – c)2 = a2 + b2 + c2 + 2(ab – ac – bc)

n bir tam sayı ve a ¹ b olmak üzere,• (a – b)2n = (b – a)2n

• (a – b)2n – 1 = –(b – a)2n – 1 dir.

• (a + b)2 = (a – b)2 + 4ab

5. (a ± b)n nin Açılımı

Pascal Üçgeni

 

https://ygs.konu-anlatimi.gen.tr/

(a + b)n açılımı yapılırken, önce a nın n . kuvvetten başlayarak azalan, b nin 0 dan başlayarak artan kuvvetlerinin çarpımları yazılıp toplanır.

Sonra n nin Paskal üçgenindeki karşılığı bulunarak kat sayılar belirlenir.

(a – b)n yukarıdaki biçimde yapılır ancak b nin; çift kuvvetlerinde terimin önüne (+), tek kuvvetlerinde terimin önüne (–) işareti konulur.

• (a + b)3 = a3 + 3a2b + 3ab2 + b3• (a – b)3 = a3 – 3a2b + 3ab2 – b3

• (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 +b4

• (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4

• a4 + a2 + 1 = (a2 + a + 1)(a2 – a + 1)• a4 + 4 = (a2 + 2a + 2)(a2 – 2a + 2)

• a4 + 4b4 = (a2 + 2ab + 2b2)(a2 – 2ab + 2b2)

a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – ac – bc)

C. ax2 + bx + c  BİÇİMİNDEKİ ÜÇ TERİMLİNİN ÇARPANLARA AYRILMASI

ax2 + bx + c ifadesini çarpanlarına ayırırken birkaç yöntem kullanılır. Biz burada ikisini vereceğiz. En iyi öğrendiğiniz yöntemi daima kullanarak pratiklik sağlayınız.

1. YÖNTEM

1. a = 1 için,

b = m + n ve c = m × n olmak üzere,

https://ygs.konu-anlatimi.gen.tr/

2. a ¹ 1 İken

m × n = a, mp + qn = b ve c = q × p ise

https://ygs.konu-anlatimi.gen.tr/

ax2 + bx + c = (mx + q) × (nx + p) dir.

2. YÖNTEM

Çarpımı a × c yi,

toplamı b yi veren iki sayı bulunur.

Bulunan sayılar p ve r olsun.

Bu durumda,

https://ygs.konu-anlatimi.gen.tr/

daki ifade gruplandırılarak çarpanlarına ayrılır.

Bir Cevap Yazın

E-posta hesabınız yayımlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir